Impaired transmission in the corticospinal tract and gait disability in spinal cord injured persons.
نویسندگان
چکیده
Rehabilitation following spinal cord injury is likely to depend on recovery of corticospinal systems. Here we investigate whether transmission in the corticospinal tract may explain foot drop (inability to dorsiflex ankle) in persons with spinal cord lesion. The study was performed in 24 persons with incomplete spinal cord lesion (C1 to L1) and 15 healthy controls. Coherence in the 10- to 20-Hz frequency band between paired tibialis anterior muscle (TA) electromyographic recordings obtained in the swing phase of walking, which was taken as a measure of motor unit synchronization. It was significantly correlated with the degree of foot drop, as measured by toe elevation and ankle angle excursion in the first part of swing. Transcranial magnetic stimulation was used to elicit motor-evoked potentials (MEPs) in the TA. The amplitude of the MEPs at rest and their latency during contraction were correlated to the degree of foot drop. Spinal cord injured participants who exhibited a large foot drop had little or no MEP at rest in the TA muscle and had little or no coherence in the same muscle during walking. Gait speed was correlated to foot drop, and was the lowest in participants with no MEP at rest. The data confirm that transmission in the corticospinal tract is of importance for lifting the foot during the swing phase of human gait.
منابع مشابه
Impaired transmission in the corticospinal tract and gait disability in spinal cord injured 1 persons 2 3
32 33 Rehabilitation following spinal cord injury is likely to depend on recovery of 34 corticospinal systems. Here we investigate whether transmission in the corticospinal tract 35 may explain foot drop (inability to dorsiflex ankle) in persons with spinal cord lesion. 36 The study was performed in 24 persons with incomplete spinal cord lesion (C1 to L1) and 37 15 healthy controls. Coherence i...
متن کاملRelationship between timed 25-foot walk and diffusion tensor imaging in multiple sclerosis
OBJECTIVE/BACKGROUND The majority of multiple sclerosis patients experience impaired walking ability, which impacts quality of life. Timed 25-foot walk is commonly used to gauge gait impairment but results can be broadly variable. Objective biological markers that correlate closely with patients' disability are needed. Diffusion tensor imaging, quantifying fiber tract integrity, might provide s...
متن کاملDegeneration of the Injured Cervical Cord Is Associated with Remote Changes in Corticospinal Tract Integrity and Upper Limb Impairment
BACKGROUND Traumatic spinal cord injury (SCI) leads to disruption of axons and macroscopic tissue loss. Using diffusion tensor imaging (DTI), we assessed degeneration of the corticospinal tract (CST) in the cervical cord above a traumatic lesion and explored its relationship with cervical atrophy, remote axonal changes within the cranial CST and upper limb function. METHODS Nine cervical inju...
متن کاملPlasticity of Corticospinal Neural Control after Locomotor Training in Human Spinal Cord Injury
Spinal lesions substantially impair ambulation, occur generally in young and otherwise healthy individuals, and result in devastating effects on quality of life. Restoration of locomotion after damage to the spinal cord is challenging because axons of the damaged neurons do not regenerate spontaneously. Body-weight-supported treadmill training (BWSTT) is a therapeutic approach in which a person...
متن کاملCortical Overexpression of Neuronal Calcium Sensor-1 Induces Functional Plasticity in Spinal Cord Following Unilateral Pyramidal Tract Injury in Rat
Following trauma of the adult brain or spinal cord the injured axons of central neurons fail to regenerate or if intact display only limited anatomical plasticity through sprouting. Adult cortical neurons forming the corticospinal tract (CST) normally have low levels of the neuronal calcium sensor-1 (NCS1) protein. In primary cultured adult cortical neurons, the lentivector-induced overexpressi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 104 2 شماره
صفحات -
تاریخ انتشار 2010